The pro-apoptotic paradox: the BH3-only protein Bcl-2 interacting killer (Bik) is prognostic for unfavorable outcomes in breast cancer

نویسندگان

  • Vrajesh Pandya
  • Darryl Glubrecht
  • Larissa Vos
  • John Hanson
  • Sambasivarao Damaraju
  • John Mackey
  • Judith Hugh
  • Ing Swie Goping
چکیده

Breast cancer is the leading cause of cancer-associated deaths in women worldwide. Clinical biomarkers give information on disease progression and identify relevant biological pathways. A confounding factor that uncouples markers from disease outcome is the ability of tumor cells to mutate and evade clinical intervention. Therefore, we focussed on apoptotic genes that modulate tumor regression. Using gene and tissue microarray analyses, we identified an association of Bcl-2 interacting killer (Bik) with poor breast cancer prognosis. Bik prognostic ability was independent of Estrogen Receptor/Progesterone Receptor and Her2 status. Additionally, Bik was independent of anti-apoptotic Bcl-2, Bcl-xL, Mcl-1 and Bcl-w suggesting a complex mechanism of tumor promotion identified by Bik high tumors. Bik also stimulates autophagy, which can contribute to enhanced tumor fitness. We found a significant association between the autophagy marker ATG5 and Bik. Combined high expression level of ATG5 and Bik was a stronger predictor of outcome than either alone. Thus, our study identifies Bik as a novel, independent prognostic biomarker for poor outcomes in breast cancer and suggests that Bik-mediated autophagy contributes to disease recurrence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation of the Pro-apoptotic Protein BIK

BIK is a pro-apoptotic BCL-2 family member and is the founding member of a subfamily of pro-apoptotic proteins known as “BH3-alone” proteins. Ectopic expression of BIK induces apoptosis in variety of mammalian cells. BIK complexes with various anti-apoptotic BCL-2 family proteins such as adenovirus E1B-19K and BCL-2 via the BH3 domain. However, the heterodimerization activity of BIK alone is in...

متن کامل

The Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis.

Evidence has been accumulating that some estrogen-dependent human breast cancers require estrogen for not only proliferation but also survival. To obtain insights into the molecular mechanisms of apoptosis of breast cancer cells subjected to estrogen starvation or exposed to antiestrogens, we characterized changes in the gene expression profile of MCF-7/BUS human breast cancer cells and reveale...

متن کامل

Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells

Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the m...

متن کامل

GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis.

The recent development of hormonal therapy that blocks estrogen synthesis represents a major advance in the treatment of estrogen receptor-positive breast cancer. However, cancer cells often acquire adaptations resulting in resistance. A recent report reveals that estrogen starvation-induced apoptosis of breast cancer cells requires BIK, an apoptotic BH3-only protein located primarily at the en...

متن کامل

The pro-apoptotic protein, Bik, exhibits potent antitumor activity that is dependent on its BH3 domain.

The Bcl-2 homology 3 (BH3) domain is present in most members of the Bcl-2 protein family and is required to confer the death-inducing properties of pro-apoptotic members, including Bax, Bak, Bad, and Bik, in cell-based assay systems. To determine whether the BH3 domain possesses a similar role in tumor tissues in vivo, we overexpressed the wild-type Bik protein and its BH3-deleted counterpart, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016